Hypervariable Domains of Self-Incompatibility RNases Mediate Allele-Specific Pollen Recognition.

نویسندگان

  • D. P. Matton
  • O. Maes
  • G. Laublin
  • Q. Xike
  • C. Bertrand
  • D. Morse
  • M. Cappadocia
چکیده

Self-incompatibility (SI) in angiosperms is a genetic mechanism that promotes outcrossing through rejection of self-pollen. In the Solanaceae, SI is determined by a multiallelic S locus whose only known product is an S RNase. S RNases show a characteristic pattern of five conserved and two hypervariable regions. These are thought to be involved in the catalytic function and in allelic specificity, respectively. When the Solanum chacoense S12S14 genotype is transformed with an S11 RNase, the styles of plants expressing significant levels of the transgene reject S11 pollen. A previously characterized S RNase, S13, differs from the S11 RNase by only 10 amino acids, four of which are located in the hypervariable regions. When S12S14 plants were transformed with a chimeric S11 gene in which these four residues were substituted with those present in the S13 RNase, the transgenic plants acquired the S13 phenotype. This result demonstrates that the S RNase hypervariable regions control allelic specificity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شناسایی و تعیین ویژگی‎های ژنومی آلل‎های خودناسازگاری در گونه‎های وحشی گلابی

The Pyrus species exhibit the gametophytic self -incompatibility which is considered to be the most widespread self-incompatibility system among flowering plants. This system prevents self-fertilization through a specific pollen-pistil recognition mechanism. The S-allele diversity in the Iranian genotypes indicates that the pear germplasm of Iran can be an excellent source of variability for br...

متن کامل

Self-incompatibility in Petunia inflata: the relationship between a self-incompatibility locus F-box protein and its non-self S-RNases.

The highly polymorphic S (for self-incompatibility) locus regulates self-incompatibility in Petunia inflata; the S-RNase regulates pistil specificity, and multiple S-locus F-box (SLF) genes regulate pollen specificity. The collaborative non-self recognition model predicts that, for any S-haplotype, an unknown number of SLFs collectively recognize all non-self S-RNases to mediate their ubiquitin...

متن کامل

Four previously identified Petunia inflata S-locus F-box genes are involved in pollen specificity in self-incompatibility.

Dear Editor, Petunia possesses self-incompatibility (SI), by which pistils reject self-pollen but accept non-self pollen for fertilization (de Nettancourt, 2001; Iwano and Takayama, 2012). Genes that regulate self/non-self recognition between pollen and pistil are located at the highly polymorphic S-locus. An S-haplotype contains the pistil-specific S-RNase gene that regulates pistil specificit...

متن کامل

Genetic evidence that two independent S-loci control RNase-based self-incompatibility in diploid strawberry

The self-incompatibility mechanism that reduces inbreeding in many plants of the Rosaceae is attributed to a multi-allelic S locus which, in the Prunoideae and Maloideae subfamilies, comprises two complementary genes, a stylar-expressed S-RNase and a pollen-expressed SFB. To elucidate incompatibility in the subfamily Rosoideae, stylar-specific RNases and self-(in)compatibility status were analy...

متن کامل

A new dual-specific incompatibility allele revealed by absence of glycosylation in the conserved C2 site of a Solanum chacoense S-RNase

The stylar determinant of gametophytic self-incompatibility (GSI) in Solanaceae, Rosaceae, and Plantaginaceae is an S-RNase encoded by a multiallelic S-locus. The primary structure of S-RNases shows five conserved (C) and two hypervariable (HV) regions, the latter forming a domain implicated in S-haplotype-specific recognition of the pollen determinant to SI. All S-RNases are glycosylated at a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 9 10  شماره 

صفحات  -

تاریخ انتشار 1997